Market Microstructure and Informational Efficiency: The Role of Intermediation

Rafael R. Guthmann* and Brian C. Albrecht†

September 2023

The competitive market is informationally efficient; people only need to know prices to implement a competitive allocation. However, the standard formulation of competition neglects any underlying market microstructure; prices, which provide the necessary information, are exogenous. We study two specific market microstructures: a model where trade is intermediated by market-makers and a model of random matching and bargaining. First, we show that an economy where competition among market-makers determines prices can approximate the informational efficiency of the competitive model. Second, we show that as the size of the economy increases, matching markets require infinitely more information than the competitive market.

JEL-Classification: C78, D40, D60, D82, D83

Keywords: allocation mechanisms; informational efficiency; random matching equilibrium; market-makers; intermediation

*Departamento de Economía, Facultad de Economía y Negocios, Universidad Alberto Hurtado, Erasmo Escala 1835, 8340539 Santiago, Chile. Email: rafaelguthmann@hotmail.com.
†International Center for Law & Economics. Email: mail@briancalbrecht.com.

We would like to thank helpful referees and seminar participants for their great feedback.
1 Introduction

Economists have long noted that competitive markets exhaust all gains from trade; that is, competitive markets are Pareto efficient. This paper studies a second argument economists have used to argue that markets are desirable. Market prices communicate all the relevant information dispersed throughout the economy; that is, competitive markets are informationally efficient. To use the famous example from Hayek (1945, p. 526), when the price of tin increases, "All that the users of tin need to know is that some of the tin they used to consume is now more profitably employed elsewhere." Knowing that a shift in either supply or demand caused the price increase would be redundant information for the tin user; the price provides all the information regarding market conditions that the user needs. Our paper argues that the intermediating agent who sets prices plays a fundamental role in a market economy by allowing other agents to economize on information through an intellectual division of labor.

Mount and Reiter (1974), Hurwicz (1977b), and Jordan (1982) proved that competitive markets, where agents take prices as given, are informationally efficient. However, as Gale (2000) and others have asked: "who sets the prices?" Instead of interpreting the model competitive equilibrium as a literal description of the economy, we should see the competitive equilibrium as a simplified representation of an economy where prices are strategically determined, the frictions of trade are low, and the number of agents is high. Building on this work on strategic foundations for competitive equilibrium, we argue that we should think of markets as being informationally efficient only if we can model markets where agents explicitly set prices to approximate informational efficiency. Therefore, our paper studies informational efficiency in markets with strategic price-setters and without the Walrasian auctioneer. Our contribution is to show that a decentralized market needs some agents that act as intermediaries between traders to approximate the informational efficiency of the competitive equilibrium.

To study markets with strategic agents, we need to incorporate the market microstructure explicitly and model any intermediaries and other institutions that facilitate trade (Spulber 1996b, p. 135). Following the market microstructure litera-
ture (Gehrig 1993; Spulber 1996a, 2002; Rust and Hall 2003), we compare two forms of trade that we observe in the world: direct trade between buyers and sellers and indirect trade mediated through explicit market-making firms or institutions (such as the stock market). In this paper, we prove informational efficiency results—one positive and one negative—for these two markets.

First, we prove that a market microstructure with intermediaries that we call market-makers can approximate the informational efficiency of the competitive mechanism. We study a model of price formation with strategic market-makers who intermediate trade between buyers and sellers.¹ We show that a model of exchange through intermediaries can approximate the informational efficiency properties of the competitive equilibrium. Because most agents are not market-makers, buyers and sellers can act as they do in the competitive mechanism and use prices as a sufficient statistic. The size of the message space needed to implement the equilibrium allocations grows at only $O(N)$, where N is the number of types in the economy, which is the same order as the competitive model.

We then extend the general market-maker model to a dynamic setting with a monopoly market-maker. Other potential market-makers can pay a fixed cost to enter, and the market is contestable (Baumol 1982). In equilibrium, the monopoly incumbent will deter entry and set all prices like the Walrasian auctioneer. Unlike the auctioneer, the market-maker is strategic, and prices are endogenous. The downside is that, with positive frictions, there are different bid and ask prices for the good instead of the single price from the auctioneer. The spread means that to implement the market-maker allocation, the message space requires only one more dimension than the uniquely informationally efficient competitive market, making an economy with a monopoly market-maker second-best compared to the competitive market.

In our model, buyers and sellers outsource the price formation process to in-

1. This model has similarities with the intermediation models of Gehrig (1993), Spulber (1996a, 1996b), and Rust and Hall (2003). Following Rust and Hall (2003), we use the term market-maker because they operate an exchange. There are many subtleties of the market microstructure that we do not study. For example, we do not address the difference between being a merchant or a platform (Hagiu 2009) or a marketplace or a reseller (Hagiu and Wright 2015). See Spulber (2019) for a recent discussion.
termediaries. With positive trade frictions, the market-makers profit by extracting part of the surplus of the gains from trade. These market-makers are arbitrageurs who can buy low, sell high, and exploit opportunities other actors do not see. As trade frictions go to zero, the market-makers still economize on information for the other agents, but the arbitrage opportunities disappear, market-makers no longer make any profits, and the allocation converges to the competitive allocation.

Given that the market-maker microstructure is approximately informationally efficient, it is natural to ask whether that is a feature of other microstructures. Our second result shows that the answer is no: We show that a standard, random matching model, as articulated in Mortensen and Wright (2002), is unattractive from an informational efficiency perspective. If matching frictions are small, the random matching mechanism is approximately competitive and, therefore, approximately efficient from an allocative perspective. However, matching remains inefficient from an informational perspective. We show that the random matching and bargaining allocation mechanism requires infinitely more information than the competitive mechanism as the types of agents in an economy grows. Random matching is informationally inefficient because each participating agent needs to have an exhaustive picture of market conditions. For example, if there are N types of buyers and N types of sellers who trade one good, the message space must include k^2 prices. Therefore, the size of the message space grows at $O(k^2)$: Random matching may be too informationally complex in large economies to be practical.

The rest of the paper is structured as follows: Section 2 discusses related literature. Section 3 lays out the abstract environment within which we will consider the specific mechanisms. Section 4 explains the baseline competitive mechanism. We then construct our market-maker in Section 5. Section 5.6 develops a dynamic model with a monopoly market-maker. Section 6 describes the matching and bargaining mechanism and includes our result on informational inefficiency, and Section 7 concludes.

2. Following Kirzner (1973, pp. 14-6), there is a literature that calls these market-makers “entrepreneurs” who “discover” profit opportunities in the market.

3. The formal connection between no-arbitrage and competitive equilibrium is well understood in the case of product markets (e.g., Makowski and Ostroy 1998) and financial markets (e.g., Werner 1987).
2 Related Literature on Informational Efficiency and the Foundations of Competitive Equilibria

As Vernon Smith (2015) recalled, "In the 1950s and ‘60s, our expectation was that complete information was necessary for equilibrium of supply and demand." This turned out to be false. First, early experiments showed that with proper trading rules, competitive outcomes emerge even with "strict privacy wherein each buyer in a market knows only his/her own valuation of units of a commodity, and each seller knows only his/her own cost of the units that might be sold" (Smith 1982). Vernon Smith (1982) called this concept the "Hayek Hypothesis."

Then, the formal articulations of the Hayek Hypothesis (e.g., Mount and Reiter 1974; Hurwicz 1977b, 1977c; Jordan 1982) have shown that competitive markets—decision makers take prices as a given and prices equate supply with demand, contrary to requiring complete information—require minimal information.4 Every agent can be unaware of most of the economy, and their preferences are private. Mount and Reiter (1974) showed that competitive equilibria are informationally efficient in the sense that competitive prices communicate the minimum amount of information necessary to implement a Pareto efficient allocation in an environment where information is dispersed. Jordan (1982) proved that competitive prices are the unique decentralized mechanism that achieves informational efficiency and satisfies the individual rationality constraint: Jovanovic (1982) showed that for any allocation mechanism that satisfies the individual rationality constraint (which he defined as "non-coercive"), implements a Pareto efficient allocation, and is informationally efficient, then that mechanism is the competitive allocation mechanism, that is, the mechanism implements the competitive equilibrium allocation. Thus, Mount and Reiter (1974) showed the analogous result to the first welfare theorem for informational efficiency, and Jovanovic (1982) showed the analogous concept to the second welfare theorem for information efficiency.5

4. See Maskin (2015) for a summary of the connections between Hayek’s work and informational efficiency.
Throughout the paper, we focus on informational efficiency in the sense of the size of the message space. The size of the messages is interpreted as a measure of the complexity of a verification protocol. As Segal (2010, p. 228) explains

[I] imagine an omniscient oracle who knows the agents’ valuations and consequently the optimal allocation(s) but needs to prove to an ignorant outsider that an allocation \(x \) is [a solution]. The oracle does this by publicly announcing a message \(m \in M \). Each agent \(i \) either accepts or rejects the message, doing this on the basis of his own type. The acceptance of message \(m \) by all agents must verify to the outsider that allocation \(x \) is optimal.

For example, the original papers on informational efficiency focused on a Walrasian equilibrium, which can be interpreted through the lens of a verification protocol. As Segal (2010, p. 229) further explains, "The role of the oracle is played by the ‘Walrasian auctioneer’ who announces the equilibrium prices and allocation. Each agent accepts the announcement if and only if his announced allocation constitutes his optimal choice from the budget set delineated by the announced prices." Thus, the agents verify the equilibrium.

Informational efficiency is a relevant metric to judge allocation mechanisms if decision-makers are constrained by the quantity of information they can incorporate into their decision-making process. In conventional economic theory, decision-makers maximize their utility regardless of the complexity of their decision problem. In contrast, if agents are boundedly rational (Selten 2001) or have rational inattention (Caplin and Dean 2015; Maćkowiak, Matějka, and Wiederholt 2020), the amount of information matters. Recent work has explicitly incorporated these limitations when evaluating alternative mechanisms (Li 2017; Oprea 2020). The Hayek Hypothesis suggests that markets are desirable institutions not because

6. Informational efficiency as the "minimal message space" should not be confused with informational efficiency in the sense of "information aggregation," as used in papers such as Grossman and Stiglitz (1980), Vives (1995), Boehmer and Kelley (2009), and Lauermann and Wolinsky (2016). Although both notions trace back to ideas in Hayek (1945), they are distinct; efficient information aggregation refers to the concept that the market prices for assets incorporate all the information available to market participants. We do not address information aggregation in this paper.
humans are perfectly rational instantaneous utility maximizers but because they are not. While we do not explicitly model any cognitive constraints, our results suggest market-makers are desirable as means to reduce cognitive costs.

Separate from the informational efficiency literature, there is a large literature on strategic foundations for competitive equilibrium (Gale 2000). Under various market microstructures, the strategic equilibrium of decentralized economies generates the same allocation as the competitive equilibrium. Therefore, the competitive equilibrium can be thought of as a convenient shortcut for the more complicated, decentralized process. Our paper shows informational efficiency can only be approximated by specific market microstructures. Not all models that provide strategic foundations for competitive equilibrium also approximate the informational efficiency of competitive equilibrium. The random matching and bargaining model is one popular explanation for economists to expect competitive allocations as frictions of trade are low (Gale 1986a, 1986b), but a random matching and bargaining equilibrium requires much more information than a competitive equilibrium. Thus, matching markets can implement allocations approximately competitive when frictions are low, but they cannot describe the informational efficiency that is understood to be a feature of markets.

3 Environment

In this section, we define our physical environment and abstract allocation mechanisms. In the next sections, we describe three specific allocation mechanisms and their properties in terms of informational efficiency: the competitive market in Section 4, the market-maker mechanism in Section 5, and the random matching mechanism in Section 6.

Allocation mechanisms

The basic framework is as follows. There are N individuals in the economy, for each individual $i \in 1, 2, \ldots, N$, let E^i be the set of "individual environments", which specifies endowments and preferences for each individual. Then, the set
of possible environments E is the product of the set of individual environments, so $E = \prod E^i$.

We let M be an abstract message space, and Y be the set of feasible net trades for the individuals of this economy. The non-empty valued correspondence $\mu : E \rightrightarrows M$ specifies a set of messages for each environment. Finally, the outcome function $g : M \to Y$ then maps messages to net trades.

Putting this together, we can define an allocation mechanism, following Mount and Reiter (1974) and Hurwicz (1977b, 1977c), and Jordan (1982):

Definition 1. An allocation mechanism is a triple (μ, M, g).

We call (μ, M) the message process of the allocation mechanism (μ, M, g): the message process is the correspondence that specifies messages given each environment and the message space M. We are interested in informationally decentralized allocation mechanisms, which are mechanisms that feature a message process (μ, M) that is privacy-preserving. In words, a mechanism is privacy-preserving if each individual’s response to a message only incorporates that person’s information and not the information of others. The informational efficiency literature considers this a desirable feature of a mechanism, since only a consumer knows her own endowment and preferences.

Definition 2. A message process (μ, M) is privacy-preserving if for each i there exists a correspondence $\mu_i : E_i \rightrightarrows M$ such that for each $e = (e^1, e^2, \ldots, e^N) \in E$, the profile of correspondences $(\mu_i)_{i \in \{1, \ldots, N\}}$ satisfies

$$\mu(e) = \bigcap_{i \in \{1, \ldots, N\}} \mu_i(e^i).$$

Physical environment

For simplicity, we consider a class of environments E where there are two goods: a consumption good and a numeraire good. The agents can consume only positive quantities of the consumption good, so the consumption set is $X = \mathbb{R}_+ \times \mathbb{R}$. There is a continuum of consumers in this economy of measure one. There are N types of consumers in this economy, each of identical measure $1/N$. A type $i \in \{1, \ldots, N\}$
has preferences defined on \(X \) by a quasilinear utility function \(u_i \) that satisfies for \(x = (x_1, x_2) \in X \), that \(u_i(x) = u_{1i}(x_1) + x_2 \), and \(u_{1i} \) is strictly increasing, concave, and continuous. Let \(\mathcal{F} \) be the set of such functions and let \(w_i \in X \) be the endowment of consumers of type \(i \).

A specific environment is a realization of \(e \in E \) that specifies a profile of quasilinear preferences for the types \((u_i)_{i \in \{1, \ldots, N\}} \in \mathcal{F}^N \) and a profile of endowments for each type \((w(i))_{i \in \{1, \ldots, N\}} \in X^N \). Thus, \(e = (u_i, w(i))_{i \in \{1, \ldots, N\}} \) and \(E = \mathcal{F}^N \times X^N \).

A vector of net trades for all individuals is given by \(y \in \mathcal{R}^{2N} \). Let \(Y \) be the set of feasible net trades, which satisfies

\[
Y = \{ y = (y_i)_{i = \{1, \ldots, N\}} : \sum_i y_i = 0, y_i + w_i \in X \ \forall i \}.
\]

In addition, we say an allocation mechanism \((\mu, M, g)\) is said to be non-coercive (that is, satisfies the participation constraint) if any allocation implemented by the mechanism always yields a higher utility than consuming the endowments. This definition is stated formally below:

Definition 3. The mechanism \((\mu, M, g)\) is non-coercive (satisfies the voluntary participation constraint) if for each \(y \in g(\mu(e)) \) then \(u(w_i + y_i) \geq u(w_i) \) for all \(i \in \{1, \ldots, N\} \).

4 The Competitive Allocation Mechanism

The competitive mechanism is a triple \((\mu_c, M_c, g_c)\). The message space \(M_c \) is described by

\[
M_c = \{ (p, y) \in \mathcal{R}_{++}^2 \times Y : py(i) = 0 \ \forall i \}.
\]

That is, under a perfectly competitive allocation mechanism, the message space is the set of prices and net trades that preserve the budget balance of all consumers. The competitive message correspondence consists of prices and allocations that map the set of physical environments into messages that are utility maximizing for each consumer; it consists of a message correspondence \(\mu^i_c \) for each consumer
The message correspondence for the competitive allocation mechanism \(\mu_c \) is the intersection of these correspondences:

\[
\mu_c(e) = \cap_i \mu^i_c(e^i).
\]

By construction, this message correspondence is privacy preserving. The outcome function \(g_c \) just maps the message space into the set of net trades:

\[
g_c((p, y)) = y.
\]

Thus, the reader can check that for an environment \(e \in E \), \(\mu_c(e) \) yields the competitive equilibrium allocation and prices: it specifies prices and net trades that maximize the utility of consumers and are feasible, and the set of "outcomes" \(g_c(\mu_c(e)) \) describes the set of equilibrium net trades for the environment \(e \). Thus, if the competitive equilibrium exists for an environment \(e \in E \), then \(\mu_c(e) \) and \(g_c(\mu_c(e)) \) are non-empty.

In the competitive mechanism of the \(N \)-types economy, the message space includes only one price (as the price of the numeraire good is normalized to 1) and \(N \) types of consumers minus one for market clearing. Therefore, we have the following lemma:

Lemma 1. The message space of the competitive mechanism \(M_c \) is \(N \)-dimensional in the sense that it is diffeomorphic to an \(N \)-dimensional manifold.

Proof. See Appendix Subsection A.1

\[\square\]

Jordan (1982) showed that, under regularity conditions and among the allocation mechanisms that satisfy the participation (non-coercive) constraint, the competitive mechanism is the unique informationally efficient mechanism: it is informationally efficient in the sense of minimizing the number of dimensions for a mechanism that implements a Pareto efficient allocation and he also showed that
informationally efficient allocation mechanism that satisfies the participation con-
straint must be the competitive mechanism. Thus, the competitive mechanism will
serve as the benchmark to measure other mechanisms.

To visualize the dimensionality of the message space for the competitive mech-
anism, consider an economy with four types of consumers in Figure 1. The oracle
needs to communicate the relevant information about both prices and quantities.
There is one public price for the consumption good for all consumers to know, as
shown in Figure 1a, the price of the numeraire good can be normalized to one. For
the quantities, the oracle needs to tell each consumer the quantity of the consump-
tion good to trade; the quantity of the numeraire is implicitly defined by the budget
balance. Also, if we know the trades for all but one of the types, then market-
clearing implies the trades for the last type. This is shown in Figure 1b. Adding
these necessary messages together, the dimensionality of the message space is 4:
one price and three quantities of the consumption good for the first three types of
consumers.
Figure 1: Example Competitive Mechanism with $N = 4$.

\[M_c = (p, y_{11}, y_{21}, y_{32}) \]

(c) Message Space
5 Informational Efficiency under the Market-maker Mechanism

5.1 Frictionless Environment

Now suppose that, in addition to buyers and sellers (the consumers), there is a finite set J of "market-makers" in this economy. Market-makers are profit-maximizing (only attribute utility to the numeraire good) intermediaries that "make the market" by posting bid and ask prices for the consumption good and intermediate trade between the consumers. Unlike the search mechanism, buyers and sellers are not directly matched with each other. Instead, both buyers and sellers trade through the market-makers. In this rather simple environment, buyers purchase from the lowest-priced market-maker they have access to as long as it is lower than their valuation, while sellers sell at the highest-priced market-maker as long as the posted price is higher than their cost.

To make the competitive equilibrium unique in this section, we assume that the utility function of the consumers for the consumption good is strictly concave. In this case, the utility function is strictly increasing, and thus demand is single-valued, continuous, and strictly decreasing on price, which implies that the competitive equilibrium price is a unique p^*. Consider the case where consumers have costless access to all contracts posted by all market-makers. We will show that this is equivalent to the competitive mechanism through Bertrand competition. To see this, consider a market-maker who posts a pair of bid and ask prices $(p_b, p_s) \in \mathbb{R}^2_{++}$ for the consumption good, which are, respectively, higher and lower than the prices posted by all other market-makers. In that case a consumer will either purchase the consumer good for p_s or sell the consumer good for p_b.

Let $D_i(p)$ be the demand of a consumer of type i for the consumption good. As there are bid and ask prices, consumers partition themselves into two groups: the

7. In our model, market-makers perform the same role as in Spulber (1996a, 1996b). We have a finite number of market-makers, and consumers are matched with different a probability to each market-maker.
types that have excess demand for the good and choose their demand according to \(D_i(p_s) \) and the types who have excess supply who choose the quantity according to \(D_i(p_b) \). Because demand is downward sloping, which means here \(D_i(p_s) < D_i(p_b) \) if \(p_b < p_s \), there might be some types \(i \) where \(D_i(p_s) \leq w_{i1} \leq D_i(p_b) \). In words, some people may be net suppliers and some may be net demanders.

The market-maker chooses \((p_b, p_s)\) to maximize profits, which are

\[
\pi(p_s, p_b) = (p_s - p_b) \times \left[\sum_{i:D_i(p_b) < w_{i1}} [w_{i1} - D_i(p_b)] \right], \tag{5}
\]

subject to the market clearing constraint that the quantity brought from sellers is equal to the quantity demanded by buyers:

\[
\sum_{i:D_i(p_b) < w_{i1}} w_{i1} - D_i(p_b) + \sum_{i:D_i(p_s) > w_{i1}} w_{i1} - D_i(p_s) = 0. \tag{6}
\]

If the market-maker posts bid prices lower than some other market-maker, then no seller will sell to it, and its profits will be zero. If the maker posts bid prices higher than all others but not the lowest ask prices, the market-maker has monopolized the supply, and profits also satisfy 5 subject to the resource constraint 6.

Proposition 1. If at least two market-makers are operating, then there is only one Nash equilibrium: for at least two market-makers to post a pair of bid-ask prices \((p_b, p_s) = (p^*, p^*)\); market-makers post the competitive equilibrium price.

Proof. See Appendix Subsection B.1

Proposition 1 states that this environment of strategic price determination by market-makers implements the competitive equilibrium in a frictionless setting with complete awareness. Moreover, the proposition says that if consumers have perfect access to all market-makers then two market-makers are sufficient to achieve the competitive allocation, as in the model of Bertrand competition. 8

8. Note that the resources constraint prevents a market-maker from monopolizing the supply.
This simple strategic model of intermediation can explain perfectly competitive markets, but as real markets exhibit many imperfections, we extend this model to address imperfectly functioning markets over the rest of this section.

5.2 Frictions of Trading: Constrained Consideration Sets

We extend this market-maker model to incorporate frictions of trading, which allows it to yield results such as market power, price dispersion, and other features (or "imperfections") of markets that do not exist in the idealized competitive market.

We represent the frictions of trading by the assumption that consumers have constrained access regarding the market-makers that they can trade with. The description of an environment \(e \in E \) includes the market-makers and the degree of access among consumers regarding these market-makers. For each market-maker \(j \in J \), let \(m^j \in (0, 1] \) be the fraction of consumers with access to market-maker \(j \). We assume that access is randomly and independently distributed, so a fraction \(m^j \) of consumers of any type has access to market-maker \(j \) and the fraction of consumers with access to market-makers \(j \) and \(j' \) is \(m^j \times m^{j'} \). Independence also implies that the fraction of consumers who are aware of the seller \(j \) conditional on being aware of a competitor is \(m^j \). Like with valuations, consumers’ access to specific market-makers is private information, so market-makers cannot discriminate against consumers based on their access.

In this environment, consumer types are also differentiated by accessibility. A consumer type is defined for preferences and accessibility: utility function \(u_i \) and posting the monopoly price as an equilibrium: that would be part of an equilibrium if the demand from the buyers were inelastic. In that case, a market-maker could make zero profits by posting a higher ask price than the competitive price and selling part of the supply at the (revenue maximizing) monopoly price. However, in this case, the quantity supplied at a higher ask price than the competitive price is strictly higher. In comparison, the quantity demanded is strictly lower; there will be excess supply, so the market-maker would not satisfy the resource constraint (as we do not allow excess supply in our market-clearing condition). This explains why our set of possible equilibrium is restricted compared to Stahl (1988).

9. Other studies, such as Perla (2019), Guthmann (2021), McAfee (1994), Albrecht (2020), and Armstrong and Vickers (2022), use terms such as "awareness," "availability rate," "choice set," "loyal customers," and "consideration set" to indicate the subset of agents that buyers or sellers have access to.
accessibility $A^i \subset J$. Since access is independently distributed, if $m^i < 1, \forall j$, then there is a positive measure of consumers without access to any market-maker. Let NA (for "no-access") be the index for the set of consumers A^{NA} who do not have access to any market-maker. The budget set for a consumer of type i includes all pairs of prices from market-makers they have access to:

$$B_i = \{ y \in X - w_i : \exists j \in A^i \text{ such that } p^i(y)y = 0 \},$$ (7)

where $p^i(y)$ are the prices posted by market-maker j conditional on net-trade y (that is, if the consumer chooses a positive quantity of the consumption good, the price is p^b, if the consumer chooses a negative quantity the price is p^s).

5.3 Market-maker Mechanism

Consumers’ valuations and access to market-makers are private information, so market-makers are constrained to uniform pricing policies where there is no price discrimination. In this case, each market-maker posts a pair of bid and ask prices and the consumers choose the best prices among the market-makers they have access to.

We describe a strategy of the market-makers by pricing function p that assigns bid and ask prices for an $\alpha \in [0, 1]$, which represents the fraction of the monopoly profit that can be extracted from the consumers. Let $p(\alpha) = (p_b(\alpha), p_s(\alpha))$ and note that $(p_b(1), p_s(1)) = (p^M_b, p^M_s)$, the monopoly price that maximizes a market-maker’s profits conditional on it being a monopoly (note they satisfy market-clearing to be feasible). The profits earned from the consumers from trades that are executed when there is a pair of bid and ask prices $p(\alpha)$ are a fraction α of the monopoly profits, which we denote by Π^M.

Access is independently and uniformly distributed. Therefore, the quantities bought and sold by consumers in response to a pair of bid and ask prices are proportional to the access parameter m^i, which means that in an economy with one market-maker who posts $p(\alpha)$, then the profits created by that market-maker are a fraction α of the profits under monopoly prices. In addition, independence implies that for an economy populated by two market-makers j and j', if j is playing prices
according to α^j and j' is playing $\alpha^{j'}$ with $\alpha^{j'} < \alpha^j$—which implies consumers prefer the prices by j'—then the profits of j are $m^j(1 - m^{j'}) \times \alpha \times \Pi^M$. Independence also implies that if the prices posted by j imply feasible net trades under monopoly (so the quantity supplied equals the quantity demanded) then if j loses consumers to the competition of j'’s proposed prices, that implies a proportional loss of quantity supplied and demanded (in both cases equal to $m^{j'} \in (0, 1)$), which means that feasibility still holds.

A profile of actions is described by a profile of α^j for each market-maker. A mixed strategy profile is a profile of cumulative distribution functions $\{P^j\}_{j=1}^J$ on $[0, 1]$ that for $\alpha \in [0, 1]$ assigns a cumulative probability $P^j(\alpha) \in [0, 1]$ of posting bid and ask prices that yield lower profits than $(p_b(\alpha), p_s(\alpha))$.

The solution concept used here is Nash equilibrium in mixed strategies. An equilibrium is a profile of mixed strategies $\{P^j\}_{j=1}^J$ such that posting a pair of bid and ask prices $p(\alpha)$ for α on the support of the distribution P^j is profit-maximizing for market-maker j. As stated in Proposition 2, given a profile of access parameters $m = (m^j)_{j \in J}$ such that there exists at most one market-maker of whom all consumers are aware of, there is unique equilibrium strategy profile $\{P^j\}_{j=1}^J$ in this environment. We now have the relevant notation to characterize equilibrium pricing with uniform pricing strategies.

Proposition 2 (Market-maker Equilibrium). If m is such that $m^j < 1$ for at least $J - 1$ market-makers, then there is a unique equilibrium that consists of a profile of mixed pricing strategies $\{P^j\}_{j \in J}$ and a sharing rule: for a pair market-makers h and g, if $m^h < m^g$, then consumers with access to both will trade with h if the posted prices are the same.

The profile of equilibrium strategies defined on $[0, 1]$ features connected supports $[\alpha^j, \overline{\alpha}^j]$ for each market-maker $j \in J$, which share a common lower bound of the support α. The distributions are continuous on $[\alpha, 1)$. For each $j \in J$, for $\alpha \in [\alpha^j, \overline{\alpha}^j]$, $P^j(\alpha)$ satisfies

$$P^j(\alpha) = \frac{m_{\tilde{j}}}{m^j} P^j(\alpha),$$

where \tilde{j} is the market-maker with the largest awareness parameter m. The distribution $P^j_{\tilde{j}}$
Figure 2: Example of cumulative distributions of bid and ask prices when there are two market-makers 1, 2. Supports for bid and ask prices are the intervals \([p_b^M, p_b(\alpha)], [p_s(\alpha), p_s^M]\) respectively, \(p^*\) is the competitive equilibrium price. One of them post prices with positive probability mass at the pair of monopoly prices \((p_b^M, p_s^M)\).

Proof. See Appendix Subsection B.2.

The equilibrium mixed strategy profile described in Proposition 2 has the following properties: the distributions of prices posted by the market-makers are non-degenerate and are continuous on the interior of the support, and the larger market-makers (in terms of the \(m_j\)) transact at higher profit margins than smaller market-makers in the sense that the distribution of margins between ask and bid prices of the larger market-makers first-order stochastically dominate those of the smaller market-makers. The reason for this result is that (since access is uniformly and independently distributed) it is less likely that buyers and sellers have access to a competitor of a large market-maker than a competitor of a smaller market-maker, so the larger market-maker loses fewer customers if the spread between the buy and sell prices is increased.

After constructing the equilibrium strategies, it is easy to see that they converge
to the competitive equilibrium as consumers approach full access to at least two market-makers.

Corollary 1 (Convergence to Competitive Equilibrium). Consider a sequence of access parameter profiles \(m_n \) for the market-makers. If, for at least two market-makers \(h, g \), \(m_n^h \) and \(m_n^g \) both converge to one, then the equilibrium pricing strategies \(\{ p^j, p \} \) converge in probability to a competitive equilibrium price \(p^* \).

5.4 Allocation Mechanism

The mechanism, in this case, implements the allocation corresponding to a realization of the Nash equilibrium in mixed strategies. Note that if there is imperfect access regarding almost all the market-makers (that is, if \((m^j)^{\ell}_{j=1} \) satisfies \(m^j = 1 \) for at most one \(j \)), then for any market-maker the posted price for buying is strictly smaller than for selling with probability one, and therefore profits are strictly positive. Following Hurwicz (1977a), we can interpret the profits of the market-makers and the resulting deadweight losses to be both components of the "cost" of operating the allocation mechanism: the allocation implemented by the mechanism features strictly negative net trades for the numeraire good among the consumers in the economy.

The set of net trades incorporates the possibility of market-makers making profits by buying at lower prices than they sell. Let \(Y_m \) be the set of net-trades in this allocation mechanism, which are defined for each market-maker and each consumer type. Let \(Y_j \) be the set of net-trades for market-maker \(j \) is described by

\[
Y_j = \{(y^j_i)_{i=1,\ldots,N} \in \mathbb{R}^{2N} : \sum_i (y^j_{i1}, y^j_{i2}) \in (0, \mathbb{R}_-)\}. \tag{8}
\]

Note that if \(j \in J \), then the set of trade trades with \(j \) must be feasible (so the quantity of the consumption good sold and brought must add up to zero).

As some consumers do not have access to any market-maker, let \(Y_{NA} \) corresponds to the net trades implemented by the mechanism to consumers without access to any market-maker, where consumers cannot trade. In this case, only the null-set is an element of the set of net-trades:
\[Y_{NA} = \{(y_i^{NA})_{i=1,...,N} = (0,0)^N\}. \] (9)

Then, the set of net trades \(Y_m \) is described by

\[Y_m = \{\{y_j\}_{j \in J \cup \{NA\}} : y_j = (y^j_i)_{i=1,...,N} \in Y^j_i\} \]

where \(j \) is either a market-maker (so \(j \in J \)) or \(j = NA \), which indicates that a market-maker is not available.

Given a realized profile of prices \(p_m = (p^j_s, p^j_b)_{j \in J} \), the message space is given by

\[M_m = \{(p_m, y) \in \mathbb{R}^{2J}_{++} : \forall j \in J, p^j_i y^j_1 + y^j_2 = 0\}. \]

To construct the privacy-preserving message correspondence we define the correspondences for each consumer type \(i \), where \(\mu^i_m : E^i \rightarrow M_m \) satisfies for any \((p_m, y) \in \mu^i_m(e^i)\) that the vector of net-trades for consumer \(i \), \((y^i_1, y^i_2)\), is utility maximizing given the profile of bid and ask prices that consumer of type \(i \) has access to among market-makers in \(A^i \), that is \((y^i_1, y^i_2) \in \text{argmax}_{y \in B^i} u_i(w^i + y)\). Then, \(\mu_m \) is a correspondence on \(E \) to \(M_m \) that satisfies

\[\mu_m = \cap_i \mu^i_m(e^i). \]

5.5 Informational Efficiency

In this case, the dimensional size of the message space incorporates the different market-makers that make the market: if there are \(k \) market-makers then there are \(2k \) different prices posted to the consumers, and there is a subset of consumers who are not aware of any market-makers.

In this environment, the cardinality of the set of consumer types is \(N(k! + 1) \) as consumers can have access to either any subset of the market-makers or none. However, since consumers only trade with the market-maker in his accessibility set that has the most favorable prices, then we can represent the set of consumer types in the allocation mechanism by a coarser set of consumer types that only
describes his utility function and the market-maker that he trades with.10 Thus, the set of types has cardinality $N \times k + 1$, if a positive fraction of consumers lack access to any market-maker, since all types of consumers that do not have access to a market-maker have null net trades, and $N \times k$ if all consumers have access to at least one market-maker.

Given a realization of prices of the equilibrium price-posting game among market-makers, market-clearing of the consumer good among consumers who interact with each market-maker implies that the message space corresponding to environments with N different utility functions for consumers is Z-dimensional, where Z is equal to $2k + (N - 1)k$ or $2k + (N - 1)k + 1$, if the subset of consumers who are not aware of any market-makers is empty or non-empty, respectively. This is so because there are bid and ask prices for the consumption good posted by each market-maker (thus $2k$ prices), and net trades are defined for either Nk or $Nk + 1$ types of consumers, and the net-trade implemented for each type of consumer can be represented in one dimension as we know the price. Thus Z is equal to $2k + (N - 1)k$ or $2k + (N - 1)k + 1$, if the subset of consumers who are not aware of any market-makers is empty or non-empty, respectively.11 This implies the following proposition:

\textbf{Proposition 3}. \textit{As the number of types of preferences N increases to infinity, the ratio of the dimensional size of the message spaces of the market-maker mechanism to the competitive mechanism converges to k.}

That is, the ratio of the size of the message spaces between the competitive mechanism and the market-maker mechanism is approximately the number of market-makers operating in the market. This result is intuitive since the competitive mechanism implicitly assumes a single monopolist market-maker called the Walrasian auctioneer, whose bid and ask prices have zero spread.

10 That is, the computation of the dimensional size of the message-space does not need to include the information of which other market-makers the trader was aware aside from the one she transacted with.

11 The net trade can be represented as a quantity of the consumer good and the quantity paid/received by the consumer of the numeraire is implicitly implied by the budget constraint. Formally it means we can construct a C^∞-diffeomorphism between the message space and a euclidean space of either $2k + (N - 1)k$ or $2k + (N - 1)k + 1$ dimensions.
5.6 Contestable Markets

The model of this section showed that the message space was approximately proportional to the number of market-makers. Thus, this model implies that to implement an approximation of the competitive allocation, it requires twice the amount of information (an economy with two market-makers). We consider an extension of the model into a dynamic environment with contestable market-making, which allows the economy to approximate the informational efficiency of the competitive mechanism: Consider the case of a monopolist market-maker who can deter the entry of other market-makers. If all consumers have access to the monopolist, the number of consumer types is \(N \), but a pair of prices is realized instead of one price in the case of the competitive mechanism. This case represents the most informationally efficient allocation mechanism in this class of market-maker environments: with informational size \(N + 1 \), it’s only one dimension more than the competitive mechanism. This additional dimension reflects the profit margin between purchase and sale to provide incentives for the market-makers to "produce" the price mechanism.

In this environment, time is discrete, \(t = 0, 1, 2, \ldots \), and let \(\beta = 1/(1 + r) \) be the discount factor. The consumption good is perishable, and consumers’ endowments can be interpreted as a constant stream of the perishable consumption good.

Accessibility Diffusion: Given a set \(J \) of market-makers, there is an accessibility profile \(\{ m_j^t \}_{j=1}^J \in (0, 1]^J \). Suppose accessibility regarding a market-maker diffuses through the economy according to

\[
m_{t+1}^j = (1 - \delta)m_t^j + M(m_t^j, 1 - m_t^j),
\]

where \(M \) is a matching function that represents the diffusion of accessibility through consumers who hitherto had access to the market-maker, and \(\delta \in [0, 1) \) is the rate at which consumers lose access to a market-maker (i.e., accessibility depreciation parameter).

In period zero, each market-maker chooses to post prices according to a sequence of distributions for each period. Since the choice of the pricing strategies does not have any effect on the state of the market, the optimal strategy for each
market-maker is to choose the profit-maximizing pricing behavior in each period, given the action profile of the other market-makers in that period. Therefore, at time t the prices practiced in the market are $\{P^j\}_j$, described in Proposition 2 with accessibility profile $\{m^j\}_j$.

We are interested in the convergence of equilibrium prices and allocation to the competitive equilibrium. Since the outcome of the equilibrium is stochastic as the market-makers randomize their bid and ask prices, we use the notion of convergence in probability. Let D be the probability that the prices consumers have access to are posted from a distance $\epsilon > 0$ from competitive equilibrium prices. The economy converges to the competitive equilibrium when D converges to zero.

Proposition 4 follows from Proposition 2, as the expected equilibrium margin between buy and ask prices posted by the market-makers converges to zero if $\lim_{t \to \infty} m^j_t = 1$ for $m^j_t > 0$ and $J \geq 2$. Therefore, the accessibility of the consumers regarding the market-makers operating converges to one as $t \to \infty$. This implies that a measure converging to one of the consumers has access to buy and ask prices that are converging in probability to the competitive price. Therefore, the equilibrium allocation converges in probability to the competitive allocation.

Proposition 4. If there are at least two market-makers and if the law of motion for accessibility diffusion (equation 10) implies that $\lim_{t \to \infty} m^j_t = 1$ for $m^j_t > 0$, then as $t \to \infty$ the equilibrium prices and the equilibrium allocation converge in probability to the competitive equilibrium.

Entry and Exit

So far, we still need multiple market-makers to approximate the competitive equilibrium. To model a monopolist in a contestable market, we should introduce entry and exit. To represent the possibility of entry, let a potential entrant be a market-maker j with accessibility parameter $m^j_t = 0$. This potential entrant can enter the market incurring an entry cost $E > 0$, which is the cost of setting up an entry-level accessibility parameter $m_e \in (0, 1)$ (which then can grow according to the law of
motion for accessibility 10).12

Contestable Market Equilibrium

We will now show how a single market-maker \((N = 1)\) approximates the competitive outcome if the market is contestable in the sense of Baumol (1982). Suppose that there are only two market-makers indexed by 1 and 2. Further, at a date, \(t = 0\) suppose that \(m_1^0 = 1, m_2^0 = 0\), that is, in period 0, market-maker 1 is a monopolist that all consumers have access to and market-maker 2 is out of the market. However, 2 can decide to enter at any period. A monopoly deterrence equilibrium is a situation where the incumbent market-maker 1 posts a pair of bid and ask prices in each period such that the profits of a prospective market-maker from offering better prices to consumers are too low to compensate for the cost of entering the market.

Definition 4. A monopoly deterrence equilibrium is an equilibrium where 1 chooses a pricing schedule and, given this pricing schedule, 2 finds it optimal not to enter. The pricing schedule is profit-maximizing for two reasons. First, a higher selling-buying margin that yields higher profits for 1 would mean that 2 would enter and undercut 1’s posted offers in every period. Second, the schedule is profit-maximizing in the sense that it yields a higher discounted expected value of the profit stream for 1 than the expected value of the profits in the equilibrium under a duopoly if 2 also enters the market.

The proposition below states that if entry costs are high enough and accessibility diffusion is fast enough, then the unique equilibrium is for the monopolist to deter entry. This is because the entry cost is higher than the expected profits that can be obtained in the duopoly competition process where market-maker 2 competes with the former monopolist. However, monopolist 1 must commit to a

12. Note that the law of motion for the diffusion of accessibility (equation 10) implies that if 1) \(M\) is increasing and concave in both arguments, 2) \(m_e\) is not very large, and 3) the depreciation parameter is not very large, then market-makers grow after entry (in the sense that \(m_j^t\) is increasing over time). This implies that incumbent market-makers are larger than entrants and therefore transact at higher expected margins. This equilibrium property replicates the findings of Foster, Haltiwanger, and Syverson (2008, 2016) that incumbents charge higher prices than entrants.
sequence of prices that still yields a low enough profit to deter the entrant. The unique equilibrium is the sequence of prices that makes 2 indifferent between entering and not entering but that maximizes the present value of 1’s profit stream. As the discount rate decreases, the present value of the gains from entering the market increases. This implies that the buy and ask prices posted by the monopolist become closer to the competitive equilibrium price. Thus, as the discount rate r converges to zero, the present value of any positive profit stream diverges to infinity, which implies that the monopoly deterrence equilibrium converges to the competitive equilibrium as the discount rate converges to zero. Therefore, even with a single active market-maker, when the discount rate is sufficiently low, competition "for the field"—to borrow a phrase from Demsetz (1968)—is sufficiently intense such that the equilibrium approximates the competitive equilibrium.

Proposition 5. If accessibility diffusion is fast enough, such that $\sum_{t=0}^{\infty}(1 - m_t^2) \leq C$ for some constant C conditional on market-maker 2’s entry, and the discount rate r is low enough, then for an entry cost E equal or higher than $C \times \pi^M$, the unique equilibrium is the monopoly deterrence: The monopolist commits to post prices $p(\pi)$ that yield a per-period profit of

$$\pi = E / \left(\sum_{t=0}^{\infty} \beta^t m_t^2 \right)$$

to deter entry. As r converges to zero, the deterrence monopoly equilibrium profit flow π converges to zero, which means the posted buying and selling prices converge to the competitive equilibrium prices p^*.

Proof. See Appendix Subsection B.3.

The entry costs for market-maker 2 are costs to build up accessibility and can be interpreted as the costs of communicating information to the consumers in the economy. If the costs of communicating additional information are higher than the private benefits, which are the profits 2 obtains from entering the market, then it does not occur in equilibrium.\(^\mathbf{13}\)

\(^\mathbf{13}\) We have not performed a welfare analysis to check if the monopoly deterrence equilibrium is more efficient than the duopoly after 2’s entry. The social benefit of 2’s entry would be the
In the monopoly deterrence equilibrium, the number of market-making firms is $N = 1$, and because $m_1^1 = 1$, the subset of consumers without access to a market-maker is empty. Consider an example with two types of buyers and two types of sellers; the oracle needs to communicate two prices, a price for buyers and one for sellers, as shown in Figure 3a. The communication for the quantities is the same as the competitive mechanism, except now the trades "go through" the market-maker and not the Walrasian auctioneer, as shown in Figure 3b. The messages space M_m is five-dimensional: two prices and three quantities.

![Figure 3: Example of the allocation mechanism of a monopolist market-maker with $N = 4$](image)

$$M_m = (p_b^1, p_s^1, y_1, y_2, y_3)$$

The added dimension is the reduction of the deadweight loss thanks to prices closer to perfect competition. The social benefits are different from the private benefits of entry.
due to the fact that the market-maker posts a pair of prices instead of only a single price. For completeness, we state it as a proposition.

Proposition 6. The message space of a monopoly deterrence equilibrium requires one more dimension than the competitive equilibrium.

Proposition 6 is stated in terms of the difference in dimension size, unlike previous propositions, which were in terms of the ratio. Given that the competitive allocation is the unique informationally efficient (Jordan 1982), we have therefore shown that the mechanism of the monopoly deterrence market-maker is a second-best mechanism in terms of information. However, as we have argued above, the market-maker model has the added benefit of explicitly modeling a market microstructure with intermediaries that facilitate trade.

6 Informational Inefficiency without Intermediation

The competitive mechanism is meant to represent the frictionless limit of some strategic process of price formation. We showed how the price formation mechanisms based on intermediation (where consumers trade through market-makers) can approximate the informational efficiency of the competitive mechanism. In this section, we consider the situation where consumers have to meet each other and bargain over the terms of trade. While these models of random matching and bargaining can arrive at the competitive allocation as frictions of trade decrease, we will see that they cannot approximate the informational efficiency of the competitive mechanism. Therefore, our analysis suggests that intermediation plays a vital role by allowing markets to achieve informational efficiency.

To understand the informational efficiency of a decentralized matching and bargaining process, we need an explicit model. We use the model from Mortensen and Wright (2002), which is a standard articulation of the modern random matching and bargaining modeling framework.
6.1 Description of the Matching Environment

Time is continuous. For tractability, we assume that in this environment, the types of consumers can be partitioned into two types: buyers who are not endowed with the consumption good and sellers who are endowed with one unit of the consumption good. There are $N_b > 0$ types of buyers and $N_s = N - N_b > 0$ types of sellers, buyer types i_b are indexed by $i_b \in \{1, \ldots, N_b\}$ and seller types i_s are indexed by $i_s \in \{N_b + 1, \ldots, N\}$.

We assume that consumers have unit demand, with means a consumer of type i has a utility function $u_i(x_1, x_2)$ defined for the consumption good x_1 and the numeraire good x_2. The utility function satisfies $u_i(x_1, x_2) = v_i x_1 + x_2$ for $x_1 \in [0, 1]$ and $u_i(x_1, x_2) = v_i + x_2$ for $x_1 > 1$, we call v_i the valuation of type i. Let F and G be the cumulative distribution functions of valuations of buyers and sellers (the c.d.f. $F(x)$ is equal to the fraction of buyer types $\{i\}_{i \in \{1, \ldots, N_b\}}$ such that $v_i \leq x$).

There is a flow of buyers who can enter the market at the rate $b > 0$ and sellers at the rate $s > 0$. Buyers (sellers) then can choose to "enter the market," which means they can randomly meet sellers (buyers) and trade. Given populations of buyers $B > 0$ and sellers $S > 0$ participating in the market, they meet according to the matching function $M(B, S)$. Let the buyer/seller ratio $\theta = B/S$ be the market tightness parameter, $m(\theta) = M(B, S)/S$ be the rate a seller meets buyers, and $m(\theta)/\theta$ be the rate a buyer meets sellers. All agents discount future payoffs at the rate $r \geq 0$, and to participate in the matching process buyers have to incur a cost $c_b \geq 0$, while sellers have to incur a cost $c_s \geq 0$.

When a buyer and a seller meet, one of the two, randomly chosen, announces a take-it-or-leave-it price offer. Let $\omega \in (0, 1)$ be the probability a seller makes the offer. If the other party rejects the offer, they both continue searching as if they had never met; if the other party accepts the offer, the exchange occurs, and both exit the market. We study the steady-state search equilibrium where the flows of buyers and sellers exiting the market are equal to the flows entering so that the corresponding net trades in the competitive equilibrium have an analogous implementation in this environment. That means b times the probability the buyers choose to enter is the flow of entering buyers in the market, and this flow of en-
tering buyers is equal to the flow of matchings $M(B, S)$ times the probability they trade and exit. Note that as in the steady-state equilibrium, the flow of sellers entering the market is also equal to the flow of trades, which means that supply (sellers entering the market) is equal to demand (buyers entering the market).

Note that the bargaining protocol we use is equivalent to the generalized Nash solution over the joint surplus where the sellers’ bargaining power is $\omega \in (0, 1)$. To see this, let $V_b(x)$ be the value of a buyer with valuation x to participate in the market and $V_s(z)$ be the value of a seller with valuation z. A take-it-or-leave-it offer to a buyer of one unit of the good for a price p is acceptable if and only if the price generates a surplus equal to or higher than the value of continuing to search for trading partners; thus, the offer, $x - p \geq V_b(x)$, is acceptable to a seller if and only if $p - z \geq V_s(z)$. Thus the best strategy for one party is to offer the other party’s reservation value; thus, the seller offers $p = x - V_b(x)$, the buyer offers $p = z + V_s(z)$, and a transaction occurs if and only if $x - V_b(x) \geq z + V_s(z)$. Since the seller makes the offer with probability ω, the expected price of a transaction is $p(x, z) = \omega(x - V_b(x)) + (1 - \omega)(z + V_s(z))$, which can be rearranged as

$$p(x, z) = z + V_s(z) + \omega[x - z - V_b(x) - V_s(z)].$$

This is the price according to the generalized Nash solution if the seller captures a fraction ω of the joint surplus given reservation values $z + V_s(z)$ for the seller and $x - V_b(x)$ for the buyer.

Given the transaction prices, the values of participating in the market can be described as follows: The expected value of participation in the market for a buyer satisfies

$$rV_b(x) = \frac{m(\theta)}{\theta} \int \max\{x - p(x, z) - V_b(x), 0\} d\Gamma(z) - c_b,$$

and the expected value of participation in the market for a seller satisfies

$$rV_s(z) = m(\theta) \int \max\{p(x, z) - z - V_s(z), 0\} d\Phi(x) - c_s,$$

where Γ and Φ are the distributions of seller and buyer types participating in the market. These distributions differ from the respective exogenous distribution of
potential seller and buyer entrants, G and F, as some types choose not to enter if the expected value of entering is not positive.

Substituting the right-hand side of equation 11 into equations 12 and 13 yields

$$rV_b(x) + c_b = \frac{m(\theta)(1 - \omega)}{\theta} \int \max\{x - z - V_b(x) - V_s(z), 0\} d\Gamma(z) \quad (14)$$

and

$$rV_s(z) + c_s = m(\theta)\omega \int \max\{x - z - V_b(x) - V_s(z), 0\} d\Phi(x). \quad (15)$$

Equations 14 and 15 show that the value of participating in the market is strictly increasing in the buyer’s valuations and strictly decreasing in the seller’s valuation. Because the participation values are monotonic, there exist marginal entrants. The steady-state search equilibrium is defined in terms of a pair of marginal types of buyers and sellers (R_b, R_s) with $R_b > R_s$, where a buyer with valuation x enters the market if and only if $x > R_b$, and the seller with valuation z enters if and only if $z < R_s$. In a steady-state search equilibrium, the distribution of types participating in the market is stationary, which implies that: (1) The measure of entering sellers and buyers must be the same, and therefore the pair of marginal valuations (R_b, R_s) satisfies the condition $sG(R_s) = b[1 - F(R_b)]$.14 (2) The distribution of participating types is constant.

The steady-state search equilibrium is characterized by $(V_b, V_s, R_b, R_s, \Phi, \Gamma)$, the value functions (V_b, V_s), cutoff valuations to participate in the market (R_b, R_s), and the distributions of participating types (Φ, Γ) of buyers and sellers, respectively. The Appendix section C provides the characterization of the search equilibrium. We show that as search costs decrease to zero, the equilibrium distribution of prices converges to the competitive price and the equilibrium allocation converges to the competitive equilibrium allocation.

14. For steady-state equilibrium to exist we need to impose some conditions on the distribution of buyer and seller types, for example assuming that $s = b$ and that $N_b = N_s$ are sufficient conditions so that we can find pairs of marginal types that equate supply with demand.
6.2 The Allocation Mechanism in the Search Equilibrium

As shown in the Appendix section C, there exists a \(\hat{r} > 0 \) such that for a discount rate \(r \leq \hat{r} \) all meetings result in trade. For simplicity, we focus on steady-state equilibrium with \(r \leq \hat{r} \). In a steady-state equilibrium, there is a constant distribution of types in the market. Therefore, the distribution of types leaving the market is the same as the distribution of types entering the market. As all meetings result in trade, these distributions are given by \((F, G)\) with the cutoffs \((R_b, R_s)\).

The allocation mechanism in the search equilibrium \((\mu_s, M_s, g_s)\) is constructed as follows:

As prices and allocations depend on who one matches with, the sets of types now include all pairs of buyer types \(i_b \) and sellers types \(i_s, (i_b, i_s) \). Let \(y \) be a profile of net-trades for each possible pair of types of buyers and sellers \((i_b, i_s)\). Let \(y(i_b, i_s) \) be the net trade for buyer of type \(i_b \) that matches sellers of type \(i_s \) and \(y(i_s, i_b) \) is the net trade of a seller of type \(i_s \) that matched with buyer of type \(i_b \). Let \(Y \) be the set of feasible net trades. Then \(y \in Y \) is a feasible profile of net-trades if and only if

\[
y(i,j) + w_i \in X, y(j,i) + w_j \in X \text{ and } \sum_{(i,j)} y(i,j) = (0,0).
\]

Note that as a steady-state equilibrium might feature \(R_b < \min \{x(i_b)\}_{i_b=1}^{N_b} \) and \(R_s > \max \{z(i_s)\}_{i_s=N_b+1}^{N_s} \); all types of buyers and sellers participate in the market message space of this allocation mechanism must specify a price for each possible pairing of buyers and seller types, which means that there are \(N_b \times N_s \) prices for each pair of buyer-seller types \((i_b, i_s)\).

The message space is:

\[
M_s = \{(p_s, y) \in \mathcal{R}_+^{N_b} \times \mathcal{R}_+^{N_s} \times Y : p_s(i_b, i_s)y_1(i_b, i_s) + y_2(i_b, i_s) = 0 \ \forall (i,j)\}, \tag{16}
\]

where \(p_s(i_b, i_s) \) is a price assigned for a pair of buyer and seller types. We construct a message correspondence that is privacy preserving and implements the allocation of the steady-state search equilibrium.

Let \(\mu_s^t \) be a correspondence from the set of environments \(E^t \) (here constrained to buyers and sellers with unit demand) to \(M_s \) that satisfies \(\mu_s^t(e^t) = \{(p_s, y) \in M_s : y(i) = y_s(i)\} \), where \(p_s(i_b, i_s) \) is a price for a pair of buyer and seller types \((i_b, i_s)\)
and \(y_s(i) \) is the net-trade in the steady-state search equilibrium. If \(i \) is a buyer of type \(i_b \) who meets seller \(i_s \) and wants to trade, which means \(v_{i_b} > p_s(i_b, i_s) \), the net trade for type \(i \) is given by \(y_s(i) = (1, -p_s(i_b, i_s)) \). Otherwise, if \(v_{i_b} < p_s(i_b, i_s) \) then \(i \) does not enter the market, trade does no occur, and \(y_s(i) = (0, 0) \).

Define the correspondence \(\mu_s : E \mapsto M_s \) by

\[
\mu_s(e) = \cap_i \mu_i^i(e^i) \cap (p_s(e) \times Y),
\]

where \(p_s(e) \) is the profile of prices determined by the steady-state search equilibrium in the environment \(e \) for the types that trade in equilibrium (so \(p_s(e, (i_b, i_s)) \) is the equilibrium price for a pair of buyer and seller types \((i_b, i_s))\), for the types that do not trade in equilibrium set \(p_s(e, (i, i_s)) = R_b \) if \(i \) is a type of buyer who does not participate in the market for any seller type \(i_s \) (note that \(v_i < R_b \) so this type does not trade), and \(p_s(e, (i_b, i)) = R_b \) if \(i \) is a type of seller who does not participate in the market (note that \(v_i > R_s \) so this type does not trade as well).

Note that since buyers and sellers meet randomly and the transaction price depends on the pair of valuations of buyers and sellers \((p(x, z))\), prices are not deterministic in the search equilibrium. However, the distribution of realized transaction prices is deterministic, as there is a continuum of consumers. Thus any search equilibrium \(p_s \) implies an equilibrium c.d.f. of prices \(P \). Also, note that \(p_s(i) > R_s \) if \(c^i \leq R_s \) and \(p_s(i) < R_b \) if \(v^i \geq R_b \) since prices must compensate for search costs, while consumers who do not trade are the types with costs/valuations in \((R_s, R_b)\).

Finally, let the outcome function \(g_s \) satisfy \(g_s(p, y) = y \), it is a projection from \(M_s \) to \(Y \).

6.3 Informational Efficiency

As there is price dispersion in the steady-state search equilibrium, the profile of prices and the set of net trades is a higher dimensional object than under the competitive mechanism. To see this, consider an economy with an even number of \(N \) types, with \(N/2 \) types of potential buyers and \(N/2 \) types of potential sellers. For the matching and bargaining mechanism in this economy, we need to specify a different price for each pair of types \((i_b, i_s)\), so there are \((N/2)^2\) prices for the indivi-
ible good. For the quantities traded, once we have specified the quantity bought by a buyer of type \(i_b \) from a seller of type \(i_s \), we have also defined the quantity sold by \(i_s \) to \(i_b \). The market clearing condition applies for each pair of trades in the matching environment. Therefore, the message space is \((N/2)^2\) for quantities traded. Therefore, the matching mechanism message space \(M_s \) is \(2(N/2)^2\) dimensional. Lemma 2 states the main result regarding information size in the matching economy.

Lemma 2. The matching mechanism message space \(M_s^N \) is a \(2(N/2)^2\) dimensional.

Proof. See Appendix Subsection C.1

Combining Lemma 1, which shows that the competitive mechanism message space is \(N \) dimensional, and 2, which shows that the matching mechanism message space is \(2(N/2)^2\) dimensional, we can see that difference between the matching and competitive mechanisms diverges to infinity as \(N \) increases. This is stated as Proposition 7.

Proposition 7. As \(N \to \infty \) the ratio of the dimensional size of \(M_s^N \) to \(M_c^N \) diverges to infinity.

While Mortensen and Wright (2002) show that as the frictions of trade decrease, the distribution of prices across transitions converges to the competitive price, so the matching and bargaining allocation mechanism converges to the competitive mechanism in terms of allocation. But it does not approximate it in terms of informational efficiency.

In other words, the matching and bargaining mechanism requires that each market participant be aware of all types of participants operating in the market to form expectations regarding payoffs from participating in the market and bargaining with the other participants. This is precisely the inverse of the intuition regarding the informational efficiency of the market as articulated by the literature on the informational efficiency of competitive markets: that each participant of the market can use prices as an efficient way to substitute for the information they would otherwise require to allocate resources without access to market prices.
Figure 4: Example Matching Mechanism with $N = 4$ types of consumers categorized as buyers and sellers.

To visualize why the message space is larger for a random matching and bargaining mechanism than the competitive mechanism, consider our previous example with four types of consumers, partitioned into two types of buyers and two types of sellers. For the random matching and bargaining mechanism, the oracle now needs to communicate a price for each pair of possible trades, as shown in Figure 4a. She also needs to communicate the quantity traded for each pair, as shown in Figure 4b. Combined, the message space for the search mechanism is 8-dimensional: four prices (one price for each possible pair of buyers and sellers) and four quantities (the quantity sold by the seller to the buyer for each possible pair).

7 Concluding Remarks

When evaluating the plausibility of different models and empirical relevance, we argue that an important factor to consider is the degree of informational efficiency.
For example, one justification for using competitive models is that people need such little information to implement a competitive equilibrium. The size of the messages needed to implement an allocation is an elegant measure of the informational and computational burden placed on the agents in the model. Economists have proved that the competitive allocation mechanism is the only informationally efficient allocation mechanism. However, as the model of perfect competition assumes that prices are not set by rational agents but are determined as the prices that "equate supply with demand," models of strategic price formation mechanisms are needed to provide strategic foundations for the concept of competitive equilibrium.

Models that explain price formation should also explain how the message space of the allocation mechanism that is implicit in the model approximates the main feature of the competitive mechanism: that agents can take terms of trade as a given without the need to "think" about how they are determined. Thus, in the present paper, we studied informational efficiency in allocation mechanisms where the terms of trade are set by strategic agents. We studied two such mechanisms: an allocation mechanism with intermediation (market-maker model) and an allocation mechanism without intermediation (a random matching and bargaining mechanism).

Models of random matching and bargaining have been extensively studied as explanations for how competitive equilibrium allocations might be approximated as frictions of trade decrease (for example, see Gale 2000). However, we show that this class of models fails to approximate the informational efficiency of competitive equilibrium: in particular, we show that when the number of types grows large, the random matching allocation mechanism requires infinitely more information than the competitive mechanism. Therefore, a true random matching mechanism, where everyone must be able to search across all the people in the economy to find trading partners, is extremely inefficient in terms of information, as it requires that each agent must have a complete model of the economy. That is one possible

15. The model also needs to fit the data, which, for the competitive model, is most clearly seen from experimental data (Smith 1982; Friedman 1984; Friedman and Ostroy 1995; Shachat and Zhang 2017; Martinelli, Wang, and Zheng 2022; Al–Ubaydli, Boettke, and Albrecht 2022).
reason we do not often observe single buyers trading with single sellers in real-world economies.

In contrast, we proposed a strategic allocation mechanism where market-makers intermediate trade. Such a mechanism has a few attractive features. First, the market-maker mechanism better matches certain features of the data, such as exhibiting price dispersion and prices that depend on the tenure of firms in the market. The other attractive feature, which is the focus of this chapter, is that the market-maker mechanism requires almost as little information as the competitive allocation, even when it is used to explain deviations from the competitive allocation. This informational efficiency is one possible reason we observe intermediaries facilitating trade between individual original sellers and individual final buyers. It may be a puzzling result that an economy in which market-makers intermediate trading for each good can be thought of as more informationally efficient than markets where trading is highly decentralized, but it is an intuitive result: if traders only need to be aware of a few intermediaries for each good they purchase, the informational requirements are much smaller than if traders need to form a model of the whole market before engaging in search and bargaining for their consumption bundle.

Our market-maker model allows us to understand better the informational efficiency of intermediating "platforms" which are just another term for market-makers (Spulber 2019), and their growing role within the modern economy. Our results suggest that the presence of platforms with large market shares, such as Amazon, Google AdSense, and Uber, might economize on information (in addition to any other frictions they reduce) compared to industries with many agents on both sides of the market. As the complexity of economic systems increases, market-maker/platforms have an increasing informational advantage over an allocation system where each trader has to meet with other traders directly.
A Competitive Mechanism Proofs

A.1 Proof of Lemma 1

Proof. Using the conditions of market-clearing, $\sum_{i=1}^{k} y_i = 0$ and budgeted balance, $py_1 = 0, \forall i$, implies that the function $(p, y) \rightarrow (p, \tilde{y}) \in \mathbb{R}^{++} \times \mathbb{R}^{N-1}$, where for $1 \leq i \leq N-1$, $\tilde{y}_{i1} = y_i$, is a C^∞-diffeomorphism. Thus, M^k_c is a $(N-1) + 1 = N$-dimensional manifold.

B Market-Maker Mechanism Proofs

B.1 Proof of Proposition 1

Proof. Note that there exists at least one competitive equilibrium price p^*: as preferences are quasilinear and the utility for the consumption good is non-negative, demand for the consumption good is downward sloping while supply is given by the endowment. Therefore, for a price, $p = 0$, demand is at least as large as supply, and if it is larger, as utility is continuous, demand is upper hemicontinuous; thus, supply and demand are equal for at least one price p^*.

To see that posting the competitive price is a Nash equilibrium, note that it yields zero profits. For any market-maker, a deviation either gives negative profits (if purchase prices are higher than p^* and for selling are lower than p^*) or zero profits (in the case the purchase prices are lower than p^* and for selling are higher than p^*). Therefore, there is no profitable deviation for a market-maker.

To see that this is the unique Nash equilibrium, suppose for a contradiction it is not. There exists another Nash equilibrium where market-makers post prices to make strictly positive profits. Other market-makers could deviate and make profits by capturing the customers of competitor market-maker by posting more attractive bid and ask prices. This logic is the same as deriving the Nash equilibrium of the standard Bertrand competition model.
B.2 Proof of Proposition 2

Proof. Part 1. Existence and characterization:

As accessibility is independent, the competitive equilibrium price p^* is also the competitive equilibrium price for the subset of traders who have access to a market-maker.

To construct the candidate equilibrium strategy profile $\{P_j\}_{j \in J}$, we consider pricing strategies described by a pair (p_b, p_s) of offers to buy and sell the good by the market-maker where $p_b \leq p^* \leq p_s$. First, consider the monopoly prices $p^M = (p^M_b, p^M_s)$ which satisfies the monopolist market-maker problem (which is to maximize profits given by equation 5 subject to the constraint described in equation 6). If there are multiple profit-maximizing pairs of monopoly prices, let (p^M_b, p^M_s) be the pair of monopoly prices with the lowest difference between the buying and selling price that clears the market.

Let j be the market-maker with the largest accessibility parameter: $(m^j = \max\{m^i\}_{i \in J})$.

Let

$$\alpha = \prod_{h \neq j}(1 - m^h),$$

and let Π^M be the monopoly profit (that is, the profits of a market-maker posting the monopoly prices in a situation of monopoly). Consider a function $p : [0,1] \rightarrow \mathbb{R}^2_+$ such that $p(\alpha) = (p_b(\alpha), p_s(\alpha))$ is a pair of prices that satisfies

$$\pi(p_b(\alpha), p_s(\alpha)) = \alpha \Pi^M,$$

and satisfies market clearing constraint (described in equation 6).

That is, $(p_b(\alpha), p_s(\alpha))$ is the pair of prices that implements a feasible net trade for a monopolist market-maker and yields a fraction α of the monopoly profits. In addition, if for some $\alpha \in [0,1]$ there is more than one such pair of prices, then $(p_b(\alpha), p_s(\alpha))$ is the pair with the smallest difference between the buying and selling prices.

This is stated formally as follows: for each $\alpha \in [0,1]$, the prices $(p_b(\alpha), p_s(\alpha))$
satisfy

\[(p_b(\alpha), p_s(\alpha)) = \arg \min_{(b,s)} \{|p_s - p_b| : (p_s, p_b) \text{ satisfies equations } 6, 18\}.\]

The existence of at least one pair of prices that satisfies equations 6 and 18 follows from the continuity of consumer demand.

Note also that if a pair of prices is feasible for a monopolist market-maker, then such a pair of prices is also feasible for a market-maker competing with other market-makers. To see this, consider two market-makers in competition. Suppose each market-maker \(j \in 1, 2\) posts a pair of bid and ask prices \(p(\alpha^j)\) for some \(\alpha^j \in [0,1]\). If \(\alpha^1 < \alpha^2\), \(1\) is posting lower ask prices and higher bid prices, and consumers who are aware of both market-makers prefer to trade with \(1\). Since consumer’s preferences are independently distributed from consumer accessibility, the quantities supplied and demanded from 2 fall in the same proportion (both supply and demand from market-maker 2 decreases by a fraction of \(m^1\)), so market-clearing still holds.

The candidate equilibrium strategy profile \(\{P_j\}_{j \in J}\) is a profile of cumulative distribution functions on \([\alpha, 1]\); \(P_j(\alpha)\) is the probability that buying (selling) prices higher (lower) than \(p_b(\alpha)(p_s(\alpha))\) and that satisfies the equal profit condition

\[\prod_{h \neq j}(1 - P_h(\alpha)m^h)\pi(p_s(\alpha), p_b(\alpha)) = \alpha\Pi^M, \quad \tag{19} \]

where \(pi(p_s, p_b)\) is given by 5. Note that

\[1 - m^h + \frac{[1 - P_h(\alpha)]m^h}{\text{Prob. } h \in A^i \text{ and } (p^h_b < p_b(\alpha) \text{ or } p^h_s > p_s(\alpha))} = 1 - P_h(\alpha)m^h, \quad \tag{20}\]

is the probability that a consumer chooses to transact with the market-maker \(j\) over competitor \(h\) and \(\frac{\delta\Pi^M}{\alpha}\) is the profit margin of a market-maker when posting prices at the minimum profitability level (lower bound for sales, upper bound for purchases), which means its selling (buying) prices undercuts (tops) all competitors’. Also note that equation 19 implies that \(P_h(\alpha) = 0\) as \([p_s(\alpha) - p_b(\alpha)]G[p_b(\alpha)] = \]
To check that this is an equilibrium, note that any prices not in the support of equilibrium strategies \(\mathcal{P} = \{ (p_b(\alpha), p_s(\alpha)) : \alpha \in [\underline{\alpha}, 1] \} \) lead to strictly lower profits: If we consider prices \((p_b(\alpha), p_s(\alpha)) \) that satisfy equations 18 and 6 defined for \(\alpha < \underline{\alpha} \), profits are strictly lower by construction. For prices \((p_b, p_s) \in [p^M_b, p_b(\underline{\alpha})] \times [p_s(\underline{\alpha}), p^M_s] \cap \mathcal{P} \), they either yield strictly lower profits because they are undercut by prices which would achieve similar profitability in the case the market-maker were a monopolist, or they are not feasible (that is, the market-maker promises to sell more than it purchases).

Given the sharing rule, it is easy to check that profits are constant on the support of \(\{ P^j \} \) for each \(j \). If there is only one market-maker \(j \) with the largest accessibility parameter \(m^j \), then the equal profit condition (equation 19) implies that there is an atom of probability in the mixed strategy of the largest market-maker at the monopoly price, \(P_j^j(p^M) \). The sharing rule implies that consumers always choose to trade with \(h \neq j \) if \(h \) posts the monopoly prices \(p^M \), hence its profits do not fall discontinuously on the support of the equilibrium strategy \([\underline{\alpha}, 1]\) as \(p(\alpha) \rightarrow p^M \).

Part 2. Uniqueness:

Note that any feasible pricing strategy for the market-maker must be consistent with market clearing. Note that by construction, the pricing strategies on the set of pairs of prices \(\{ p(a) : a \in [0, 1] \} \) are weakly dominant, as any feasible pricing strategy \((p_b, p_s) \) yields the same profits as a strategy \(p(a) \) for some \(a \in [0, 1] \), then sellers and buyers prefer the buying and selling prices \(p(a) \). Therefore, for any market-maker posting a pair of prices \((p_b, p_s) \notin \{ p(a) : a \in [0, 1] \} \) cannot be a best response to a best response. Hence, any candidate for Nash equilibrium consists of distributions over prices in \(\{ p(a) : a \in [0, 1] \} \).

Because we are restricted in our candidate equilibrium strategies to prices in \(\{ p(a) : a \in [0, 1] \} \), the proof of uniqueness of equilibrium is a proof of uniqueness over distributions on \([0, 1] \). Consider an equilibrium strategy profile \(F \), undercutting arguments imply that \(F = \{ F^j \}_{j \in J} \) is non-degenerate and the upper bound of the support for at least a pair of market-makers must include the monopoly price (otherwise it is a profitable deviation to post the monopoly price). The union of
the supports for the strategies must be convex; otherwise, market-makers could increase profits by posting prices in the complement of the support. Additionally, the supports for the mixed strategies of individual market-makers must be convex; otherwise, the equal-profit condition will be violated.

Note that there cannot be atoms at a lower bound of the support of equilibrium price distributions; otherwise, other market-makers have the incentive to post a more attractive pair of prices \(p(\alpha) \) for \(\alpha \) in the \(\epsilon \)-neighborhood of the lower bound of the support. If there are no atoms at the lower bound of the support of the distribution, the lower bound of the supports for any pair of market-maker must be the same if the interiors of the supports overlap. This implies that equilibrium strategies for all seller types have convex supports (that is, the union of the supports is its own convex hull).

As any equilibrium in this environment with mixed pricing strategies satisfies the equal profit condition, the discussion in the preceding paragraph implies that equation 19 characterizes any equilibrium where the interiors of the supports of the price distributions overlap. This implies this set of equilibria is unique. To finish the proof that the equilibrium is unique, it remains to show that any equilibrium profile of price distributions is such that the interiors of the supports overlap. That is, for any pair of market-makers the interior of the support of mixed pricing strategies must overlap.

To see that suppose, without loss of generality, that there is an equilibrium strategy profile \(P \) such that there is a pair of market-makers \(j, j' \) with the same accessibility parameter \(0 < m^j = m^{j'} < m^k \) who compete against each other posting prices according to a strategy that is described by pair of distributions \(P^j, P^{j'} \) on \([0, 1]\) and the price posting function \(p \) that maps \([0, 1]\) into pairs of buying and selling prices. The distributions \(P^j, P^{j'} \) have the same support \([\alpha^*, \bar{\alpha}^*]\) while all other market-makers post prices according to distributions that have their supports in \([\alpha, 1]\) with \(\alpha = \bar{\alpha}^* \). In words, market-makers \(j \) and \(j' \) compete by posting strictly more attractive prices to buyers and sellers than all others. Let \(\hat{K} \) be the market-maker with largest accessibility parameter in the subset of market-makers \(\hat{J} = J - \{j, j'\} \).

Let \(\Pi^o(\alpha) \) be the equilibrium profits per unit of accessibility of market-maker \(o \).
in posting prices $p(\alpha)$; we call that o’s equilibrium "profitability." Since $\overline{\alpha} = \overline{\alpha}$, the profitability of market-maker j of posting prices $p(\overline{\alpha})$ is

$$\Pi^j(\overline{\alpha}) / m^j = (1 - m^j)\overline{\alpha} \Pi^M. \tag{21}$$

If market-maker $o \neq j, j'$ posts prices $p(\overline{\alpha})$, its equilibrium profitability is

$$\Pi^o(\overline{\alpha}) = (1 - m^j')(1 - m^j)\overline{\alpha} \Pi^M. \tag{22}$$

Note that $\overline{\alpha} = \overline{\alpha}$, and therefore the equal-profit condition for j and equation 21 imply that

$$\overline{\alpha} = (1 - m^j')\overline{\alpha}. \tag{23}$$

Finally, equations 22 and 23 together imply that for market-maker $o \neq j, j'$ that its profitability in posting prices $p(\overline{\alpha})$ satisfies

\begin{align*}
\Pi^o(\overline{\alpha}) &= \overline{\alpha} \Pi^M \\
&= (1 - m^j')\overline{\alpha} \Pi^M > (1 - m^j')(1 - m^j)\overline{\alpha} \Pi^M \\
&= \Pi^o(\overline{\alpha}). \tag{24}
\end{align*}

The inequality 25 is a contradiction with P being an equilibrium. Therefore, in equilibrium, the interior of the supports must overlap.

Hence, the pricing strategy described by $\{P_j\}_{j \in J}$ is the unique Nash equilibrium given the sharing rule that the market-maker with the smaller accessibility parameter m^j has priority in transactions to buyers and sellers in the case of a tie in prices. ■

B.3 Proof of Proposition 5

Proof. As in the proof of proposition 2, let Π^M be the monopoly profit rate. Consider a profit rate $\pi \in (0, \Pi^M)$ (in slight abuse of notation), and suppose the incumbent 1 considers posting prices $p(\pi) = (p_b(\pi), p_s(\pi))$, which is the pair of bid
and ask prices with the smallest difference that satisfies $\pi(p_b(\pi), p_s(\pi)) = \pi$. The pricing strategy, $p(\pi)$, yields a payoff of $\pi \times ml$, if j is a monopolist. We will say a firm "undercuts" by posting a pair of bid and ask prices $p(\tilde{\pi})$ with $\tilde{\pi} < \pi$, thus $p_b(\tilde{\pi}) > p_b(\pi)$ and $p_s(\tilde{\pi}) < p_s(\pi)$.

First, for simplicity, we consider the case where agents are myopic and only care about present payoffs. Then, we extend the equilibrium to the case when agents care about future payoffs.

Step 1: One period deterrence game

In this case, agents are myopic and only care about present payoffs so that the discount factor $\beta = \frac{1}{1+r} = 0$. In this case, the deterrence game has only one period. For $\pi \leq E/m_e$, if the incumbent posts $p(\pi)$, then the cost of entry E is higher than the profits 2 can make after entry by undercutting 1 with higher bid and lower ask prices. Therefore, 2 does not enter if 1 posts p.

Therefore, if the incumbent posts $p(\pi)$ for $\pi = E/m_e$ (the highest profit margin that deters entry) and the entrant is playing "no entry," this is an equilibrium if 1 has no incentive to deviate. Clearly, 1’s profits decrease with a lower bid-ask spread than $\pi = E/m_e$, so there is no incentive for 1 to deviate by posting more attractive prices to the consumers. While prices $p(\pi')$ for $\pi' > \pi = E/m_e$ imply that 2 can make profits higher than E/m_e if 2 enters and undercuts 1. Thus, 1 has no incentive to deviate in pure strategies.

It remains to show that 1 finds it more profitable to deter entry than to compete with 2 in mixed strategies, as described in Proposition 2. Note that the profit that 1 makes in the mixed strategy equilibrium with both market-makers operating is $(1 - m_e)\pi^M$. The profit 1 makes with entry deterrence strategy is E/m_e, thus if the entry cost E is high enough so that

$$E/m_e > (1 - m_e)\pi^M$$

the market-maker 1 finds it profitable to deter entry. Note also, that $m_e(1 - m_e)\pi^M$ are the profits of 2 if they enter and compete in mixed strategies with 1, thus if $E > m_e(1 - m_e)\pi^M$, 2 does not want to enter the market even if 1 plays the mixed strategy of the equilibrium where both market-makers compete. If $E \leq m_e(1 - m_e)$,
2 finds it a best response to enter the market and compete with 1 if 1 is playing the mixed strategy, and 1’s profits in the mixed strategy equilibrium are equal or higher than profit $\pi = E/m_e$ of the deterrence strategy.

Therefore, the deterrence strategy $p(\pi)$ for $\pi = E/m_e$ for 1 and 2 chooses to not enter is the only equilibrium if and only if $E > m_e(1 - m_e)\pi^M$.

Step 2: Infinite horizon deterrence game

The logic of the one period case can be extended to the environment where agents are not myopic and instead have a common discount factor $\beta \in (0, 1)$. Then payoffs of 1 and 2 playing the mixed pricing strategies in the Markov perfect equilibrium after entry are, respectively

$$U_1^e = \sum_{t=0}^{\infty} \beta^t (1 - m_t^2) \pi^M, \quad (28)$$

$$U_2^e = \sum_{t=0}^{\infty} \beta^t m_t^2 (1 - m_t^2) \pi^M, \quad (29)$$

where t is the number of periods after the entry. Therefore, $\{m_t^2\}$ is the sequence of accessibility parameters for 2 that satisfies equation 10 for $t > 0$ and $m_0^2 = m_e$.

Suppose the monopolist can only choose a fixed pricing schedule, posting $p(\pi)$, $\pi \in [0, \pi^M]$ in every period. The present value of 2’s profits conditional on entry when 1 is following its commitment $p(\pi)$ is bounded above by

$$U_2^d(\pi) = \sum_{t=0}^{\infty} m_t^2 \pi. \quad (30)$$

To deter entry, π must imply that $U_2^d(\pi) \leq E$. Consider the profit-maximizing strategy of entry deterrence π that satisfies $U_2^d(\pi) = E$, substituting for B.3 and rearranging imply that $\pi = E/ (\sum_{t=0}^{\infty} \beta^t m_t^2)$. Thus, payoffs for the deterrence strategy for 1 are

$$U_1^d = \frac{\pi}{(1 - \beta)} = \frac{E}{(1 - \beta) (\sum_{t=0}^{\infty} \beta^t m_t^2)}. \quad (30)$$

In equilibrium with entry deterrence the monopolist must find deterring entry profitable: $U_1^d \geq U_1^e$. Clearly, equation 30 implies that for an entry cost E high
enough $U_d^1 > U_e^1$.

By assumption, m_i^2 converges to 1 at a fast enough rate so that

$$
\sum_{t=0}^{\infty} (1 - m_i^2) \leq C.
$$

Now take a sequence $\{\beta_n\}$ such that $\lim \beta_n = 1$. Let $(U_d^1(\beta_n), U_d^2(\beta_n), U_e^1(\beta_n), U_e^2(\beta_n))$ be the corresponding payoffs for 1 and 2 in deterrence and in the equilibrium with entry at the discount rate β_n. Let $\{\pi_n\}_n$, with

$$
\pi_n = E / \left(\sum_{t=0}^{\infty} \beta_n^t m_i^2 \right)
$$

for each n, be the corresponding sequence of candidate deterrence equilibrium profit margins for the monopolist.

Set the entry cost $E \geq C \times \pi_M$. Then profits of 1 and 2 if both enter and play the mixed strategy equilibrium are bounded up by $C \pi M$, and so 2’s profits are always lower than the entry costs. Therefore, if 1 sets bid and ask prices π_n, 2 finds it optimal not to enter. Without entry, equation 30 implies that profits for 1, $U_1^1(\beta_n)$, are greater than E. Thus, if $E \geq C \times \pi M$, the unique equilibrium is for 1 to deter entry, analogously to the one period case.

Note that $\sum_t (1 - m_i^2) \leq C$ and 31 imply that $\pi \to 0$ as $\beta \to 1$ and therefore $p(\pi)$ converges to $p_s = p_b = p^*$ as the discount rate r falls to zero and the equilibrium allocation must converge to the competitive equilibrium.

Finally, relax the restriction that the monopolist is restricted to posting the same bid and ask prices for every period but chooses a sequence of bid and ask prices. Then the overall situation is similar but with added tedious notation. The monopolist chooses a sequence of profit shares $\{\pi_t\}_{t=0}^{\infty}$ with corresponding sequence of pairs of bid and ask prices $p(\pi_t)$. To deter entry the sequence $\{\pi_t\}$ must satisfy

$$
\sum \beta^t m_i^2 \pi_t \geq U_e^2,
$$

for each t, be the corresponding sequence of candidate deterrence equilibrium profit margins for the monopolist.

Set the entry cost $E \geq C \times \pi_M$. Then profits of 1 and 2 if both enter and play the mixed strategy equilibrium are bounded up by $C \pi M$, and so 2’s profits are always lower than the entry costs. Therefore, if 1 sets bid and ask prices π_n, 2 finds it optimal not to enter. Without entry, equation 30 implies that profits for 1, $U_1^1(\beta_n)$, are greater than E. Thus, if $E \geq C \times \pi M$, the unique equilibrium is for 1 to deter entry, analogously to the one period case.

Note that $\sum_t (1 - m_i^2) \leq C$ and 31 imply that $\pi \to 0$ as $\beta \to 1$ and therefore $p(\pi)$ converges to $p_s = p_b = p^*$ as the discount rate r falls to zero and the equilibrium allocation must converge to the competitive equilibrium.

Finally, relax the restriction that the monopolist is restricted to posting the same bid and ask prices for every period but chooses a sequence of bid and ask prices. Then the overall situation is similar but with added tedious notation. The monopolist chooses a sequence of profit shares $\{\pi_t\}_{t=0}^{\infty}$ with corresponding sequence of pairs of bid and ask prices $p(\pi_t)$. To deter entry the sequence $\{\pi_t\}$ must satisfy

$$
\sum \beta^t m_i^2 \pi_t \geq U_e^2,
$$

for each t, be the corresponding sequence of candidate deterrence equilibrium profit margins for the monopolist.
the profits of the monopolist under this strategy are

\[U_d^1 = \sum \beta^t \pi_t. \tag{33} \]

The profit-maximizing strategy for the monopolist is to choose, out of the sequences that satisfy the deterrence condition 32, the one that maximizes equation 33. Given that \(m_2 \to 1 \) and is strictly increasing, there is a unique profit-maximizing sequence \(\{\pi_t\} \), where the monopolist "frontloads" by extracting the highest profits in the early periods as the entrant’s profits from undercutting are relatively constrained by \(m_2 \) being smaller than in later periods from taking advantage of these higher margins. These profits are strictly higher than the profits from the strategy to commit to constant prices \((\pi/(1-\beta))\), and therefore the previous arguments also apply in this case.

\[\blacksquare \]

C Characterization of the Equilibrium in the Random Matching and Bargaining Economy

The equilibrium of the random matching and bargaining model approximates the frictionless limit when search costs converge to zero (where the Law of One Price holds). To see this, notice that as the discount rate \(r \) goes to zero, the left-hand side of 14 does not depend on the buyer’s valuation \(x \). Thus, the variation of the left-hand side with regard to \(x \) converges to zero as \(r \to 0 \), which implies that \(x - V_b(x) \) converges to a constant as \(r \to 0 \). In particular, for the marginal buyer type \(R_b \), we know that \(V(R_b) = 0 \); thus, this constant is \(R_b \). Therefore, \(x - V_b(x) = R_b \) for \(x \geq R_b \) when \(r = 0 \). Analogously for the seller case, \(y + V_s(z) = R_s \) for \(y \leq R_s \), which from equation 11 implies that \(p(x, z) \) is constant on \(x \) and \(y \).

Thus, the Law of One Price holds when the discount rate is zero. That is, if consumers do not discount future payoffs, their expected value in participating in the market is the expected surplus from the future transaction, which varies by the same amount as their valuation. An increase in \(\epsilon > 0 \) in a buyer’s valuation implies an increase in \(\epsilon \) in their valuation from participating in the market, so \(x - V_b(x) \) is constant, and prices are constant in regard to buyers and sellers valuations.
In the frictionless case, as the joint surplus from a meeting is constant

\[x - z - V_b(x) - V_s(z) = R_b - R_s. \] \hfill (34)

Substituting this expression in equations 14 and 15 when \(r = 0 \) yields

\[
\begin{align*}
 c_b &= \frac{m(\theta)(1 - \omega)}{\theta} \max\{R_b - R_s, 0\} \\
 c_s &= m(\theta) \omega \max\{R_b - R_s, 0\},
\end{align*} \hfill (35)
\]

and so \(R_b > R_s \). This means that among consumers in the market, any buyer’s valuation is higher than any seller’s valuation. Therefore, all meetings result in trade since there is no point in searching for other trade opportunities since they are all executed at the same price. In this case, the Law of One Price holds, and substituting equation 34 and \(y + V_s(z) = R_s \) into equation 11 we find the equilibrium price:

\[
\hat{p} = \omega R_b + (1 - \omega)R_s. \hfill (37)
\]

If search costs \((c_b, c_s)\) converge to zero, then \(\hat{p} \) converges to the competitive price and \(R_s, R_b \) both converge to the same value \(R \), which is the competitive equilibrium price \(p^* \). In terms of quantity traded, the search equilibrium allocation also converges to \(sG(p^*) \), which is the quantity sold in competitive equilibrium.

As equations 14 and 15 are continuous on \(r \), if search costs \(c_b, c_s \) are strictly positive and \(r \) is lower than some threshold \(\hat{r} > 0 \), then all meetings result in trade. This implies that the steady-state equilibrium distribution of operating types \((\Phi, \Gamma)\) is given by the densities of \((F, G)\) on the types who participate \((v \geq R_b, c \leq R_s)\). For \(r \in (0, \hat{r}) \), all meetings result in trade and there is price dispersion as \(p(x, z) \) varies with \(x \) and \(y \).

To solve for the equilibrium in this case, note that since all meetings result in trade, which implies \(\max\{x - z - V_b(x) - V_s(z), 0\} = x - z - V_b(x) - V_s(z) \). If we substitute in equation 14 and differentiate with respect to \(x \), we have that \(V_b'(x) = (1 - \omega)m(\theta)/[r\theta + (1 - \omega)] \), which is constant. Therefore, \(V_b(x) \) is linear and setting \(V_b'(R_b) = 0 \) yields the intercept. Using an analogous procedure, we can solve for \(V_s(z) \). Therefore, we have
\[V_b = \frac{(1 - \omega)m(\theta)}{(1 - \omega)m(\theta) + r\theta}(x - R_b), \]
\[V_s = \frac{\omega m(\theta)}{\omega m(\theta) + r}(R_s - z). \]

Substituting into equation 11 yields the equilibrium price for the transaction:

\[p(x, z) = \omega \left[\frac{r\theta x + (1 - \omega)m(\theta)R_b}{r\theta + (1 - \omega)m(\theta)} \right] + (1 - \omega) \left[\frac{ry + \omega m(\theta)R_s}{\omega m(\theta) + r} \right]. \]

To solve for the set of equilibria where all meetings result in trade, we need to determine \((\hat{r}, R_s, R_b)\). The market-clearing condition that \(R_s\) and \(R_b\) must satisfy is

\[G(R_s) = [1 - F(R_b)]. \]

Finally, to find \(R_s\) and \(R_b\), substitute equation 38 into 14, which gives

\[\frac{c_b\theta}{m(\theta)} = (1 - \omega) \int \left[R_b - \frac{ry - \omega m(\theta)R_s}{r + \omega m(\theta)} \right] d\Gamma(z). \]

In the steady-state when all meetings result in trade, the distributions of participating types are \(\Gamma(z) = G(z)/G(R_s)\) and \(\Phi(z) = F(x)/[1 - F(R_b)]\), and so

\[\frac{c_b\theta}{m(\theta)} = (1 - \omega) \int \left[R_b - \frac{ry - \omega m(\theta)R_s}{r + \omega m(\theta)} \right] \frac{dG(z)}{G(R_s)}. \]

Similarly, substituting equation 39 into 13 yields

\[\frac{c_s}{m(\theta)} = \omega \int \left[-R_s - \frac{r\theta x + (1 - \omega)m(\theta)R_s}{r\theta + (1 - \omega)m(\theta)} \right] \frac{dF(z)}{F(R_s)}. \]

These two equations combined with the market-clearing condition determines \((\theta, R_s, R_b)\). Mortensen and Wright (2002) show that there is a unique \(\hat{r}\) such that every meeting results in trade if and only if \(r < \hat{r}\). The condition that every meeting results in trade keeps the model easily tractable with positive search costs and price dispersion in equilibrium.
As shown in Mortensen and Wright (2002), as the discount rate \(r \) and the search costs \((c_b, c_s)\) both converge to zero, then the search equilibrium prices all converge to \(p^* \) and that the search equilibrium converges to the competitive equilibrium. Then, as it is the same allocation mechanism as the competitive equilibrium (as all trades occur at the competitive price), it is informationally efficient at this frictionless limit. We are interested in the allocations implemented by this mechanism away from the limit.

C.1 Proof of Lemma 2

Proof. With \(N/2 \) types of buyers and \(N/2 \) types of sellers, the price vector of the steady-state search equilibrium has \((N/2)^2 \) dimensions (as prices are defined for pairs of buyers and sellers), while \(Y^s \) has \((N/2)^2 \) dimensions. By analogous argument as for the competitive mechanism in Lemma 1, \(M_s \) is a \(2(N/2)^2 \)-dimensional manifold. ■
References

Albrecht, Brian C. 2020. “Price Competition and the Use of Consumer Data.”

